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Random-Walk Model for Equilibrium 
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The Voss-Clarke relation between the fluctuations of the band-limited Johnson 
noise power and the nonequilibrium steady-state current fluctuations is 
investigated for a continuous time random walk (CTRW). The equivalence 
between the CTRW and a multistate trapping model (MSTM), as shown by 
Kehr and Haus, is exploited to calculate the higher-order current correlation 
functions using the Markovian property of the MSTM description. The 
Voss-Clarke relation is found to be obeyed provided the trapping and release 
times are long compared to the microscopic correlation time of a carrier in the 
conduction state. The equilibrium resistance fluctuations are shown to arise 
physically from equilibrium fluctuations in the number of carriers in the 
conduction state. It is suggested that the results obtained here should hold for 
more general trapping models under the same physical conditions. 

KEY WORDS: Random walk; equilibrium resistance fluctuations, 1If noise; 
Voss-Clarke relation. 

1. I N T R O D U C T I O N  

W h e n  a c o n s t a n t  c u r r e n t  is p a s s e d  t h r o u g h  a r e s i s to r  R ,  the  vo l t age  ac ros s  

the  r e s i s to r  f l uc tua t e s  a b o u t  i ts m e a n  v a l u e  V. In  m a n y  types  o f  

c o n d u c t o r s ,  ~'2) the  s p e c t r u m  of  these  vo l t age  f l u c t u a t i o n s  is o b s e r v e d  to 
h a v e  the  f o r m  

~ cG 

Sv(cO ) = 2 ( I V ( t )  - -  V] IV(0 )  - -  V])e  '~ dt = 4kTR + VZSl(co ) (1 .1)  
- -  0 0  
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2 Stanton and Nelkin 

Similarly, if a constant voltage is applied across the resistor, the spectrum of 
current fluctuations is found to be 

S,(co) = 4kT/R + PSI(O ) (1.2) 

where [ is the mean current. The first term in (1.1) and (1.2) is the 
equilibrium Johnson noise. This term is well understood and is present even 
if there is no mean voltage across the resistor. The second term, SI(a)), is 
referred to as the excess noise since it is not present if the mean voltage 
across the resistor is zero. For a wide variety of materials, ~1'2) the excess 
noise SI(e) ) is found to be independent of/= and I 7 and varies approximately 
as 1If (where f = co/2n is the frequency) over several decades of frequency. 
In this paper, we are not concerned with trying to understand the physical 
origin of this frequency dependence, but instead want to clarify in what sense 
these excess fluctuations correspond to an equilibrium phenomenon, i.e., in 
what sense are they observable with no applied voltage. 

The independence of $1(o9 ) on the mean current or voltage suggests 
through Ohm's law that the fluctuations originate in the resistance: 

s (1.3) 1\ ] - -  R 2  

In this case, the current does not generate the fluctuations but is only needed 
to probe them. In principle, these resistance fluctuations should be present in 
equilibrium with no net current, though not observable in the correlation 
functions (1.1) and (1.2). How then can these fluctuations be observed in 
equilbrium? Since the band-limited Johnson noise power in a bandwidth Af 
has an average value of 4kTR(Af), Voss and Clarke (3~ suggested that these 
resistance fluctuations should manifest themselves as slow fluctuations in the 
average band-limited Johnson noise power. They showed this to be 
experimentally true for two 1If noise sources ~ (discontinuous Nb films and 
InSb). Later Beck and Spruit (4~ verified this result for a carbon resistor, 
another 1If noise source. 

The concept of equilibrium resistance fluctuations, however, has no 
precise statistical mechanical foundation. In an earlier paper, ~ Tremblay 
and Nelkin explored this question in the context of a nonlinear Langevin 
model. They found that a plausible but not unique model agreed with the 
Voss and Clarke idea. 

In this paper, we examine the Voss-Clarke idea in the context of 
random walk models of current fluctuations. In Section 2 we show how the 
fluctuations in the band-limited Johnson noise can be expressed naturally in 
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terms of the displacement a(t) of the random walker. The quantity of 
primary interest is 

([a(t  + T') -- a(t)l Z[a(v) -- a(0)] 2 7 --= 4rT'(D(0)D(t))  (1.4) 

and can be thought of as defining equilibrium fluctuations of the diffusion 
coefficient. In (1.4), T and ~' must be large enough to be in a diffusive regime 
for the mean square displacement, but both must be small compared to t. 

In Section 3 we consider a continuous time random walk (CTRW) first 
applied to 1If noise by Tunaley, (6) and recently extended by Nelkin and 
Harrison. (v) We exploit the equivalence between the CTRW and an M-state 
trapping model in the form given by Kehr and Haus. (8) This latter 
description gives an underlying Markovian description and allows the 
correlation function (1.4) to be calculated. We find agreement with the 
Voss-Clarke idea. Finally, in Section 4 we give a direct physical inter- 
pretation of the excess noise in terms of equilibrium fluctuations in the 
number of carriers in the conduction state. 

2. FLUCTUATIONS IN THE JOHNSON NOISE POWER 

In a random walk model, it is more convenient to discuss current fluc- 
tuations rather than voltage fluctuations. Although the original experiment 
was done with voltage fluctuations, there is no theoretical reason why it 
could not be done with current fluctuations. We thus extend the analysis of 
Tremblay and Nelkin, (5) essentially repeating their results (2.1)-(2.6), (3.22) 
with voltage fluctuations replaced by current fluctuations. We then go on to 
relate the current fluctuations to the displacement of the particle in the 
random walk. 

In the experiment, the current is passed through a bandpass filter 
peaked at ~o 0 with width 2(2~zAf). The filtered current is given by 

; do} i~ot Io, o(t) = J--~-~-e- G(co)I~ (2.1) 

where G(~o) is the filter function with properties 

G(-~o) = G*(~) 
(2.2) 

F (2n) - '  &o I a(co)l 2 -- 2Af 
- - o C  

The "instantaneous Johnson noise power" is the filtered current squared and 
averaged over an interval At >~ 1/~o0: 

1 (t+at/2 
Ps(t) = - ~  Jt at/2 I~o(t') dt' (2.3) 
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It is this quantity that Voss and Clarke originally proposed should exhibit 
the same fluctuations as the nonequilibrium excess current fluctuations. Its 
power spectrum is given by 

sp@) _= ze- l<ej( t )  P,(O))} 

- ZY- l~f~ dtx dtz dt3 dt4 g(--tl) g(--t2) g t -  t3) g ( t -  t4) 
\ 

X (I(t~) I(t2) I(t3) 1(14)) I (2.4) 

where J -  stands for Fourier transformation and g(t) is the inverse-Fourier 
transform of G(a)). 

When Sp(co) was normalized by the average band-limited Johnson noise 
power 

4kT 
(Pj) = S,(cOo) Af = - - -~  Af (2.5) 

Voss and Clarke observed a white background at high frequencies: 

sp(o,) _ _1 
(ps)2 Af 

(2.6) 

In addition, at low frequencies, they observed an extra noise which they 
interpreted as resistance fluctuations and which satisfied 

s , (~)  1 
- S , ( c o )  ( 2 . 7 )  

(ps)2 Af 

where S~(o)) is defined by (1.1) and (1.2). Henceforth when we refer to 
S~,(co), we shall mean only the excess noise above the white background 
noise (2.6). 

In a random walk, to relate the spatially averaged current I(t) to the 
motion of the charge carriers, we write 

N 
e 

I ( t ) =  7 ~ v,(t) (2.8) 
i = 1  

where e is the electronic charge, l is the length of the sample, and vi(t ) is the 
x component of the velocity of the ith charge carrier at time t. We treat the 
N charge carriers as independent and identically distributed to obtain 
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Me 4 
( l( t l )  I(t2) I(t3) [(t4)) = 7 (V(tl) v(/2) U(t3) v(t4)) 

, N ( N - -  l ) e  4 
~- 14 {(v(tl) V(13))(v(t2) v(t4)) + (v(tl) v(t2))(v(t3) v(t4)) 

-}- (U(tl) u(t,)~(U(t2) v(t3)~} (2.9) 

The terms proportional to N ( N -  1) in (2.9) are terms that would result in a 
Gaussian decomposition of the current. As discussed by Tremblay and 
Nelkin, ~5) they only contribute to the white noise background in (2.6). Only 
the first term is of interest here. To evaluate it approximately, we let t : - -  
t~ + ll ,  t 4 = t 3 + t; so that (2.4) becomes 

S p ( o )  = J 4 ~ ~ dt: dr; 
--CO --00 

X [(U(~tl) u(t 1 -~ t[) u(t3) u(t 3 ~- t6)~ 

• g( - - t l )g( - - t l  -- t'l) g(r -- t3) g(t -- t 3 -- t~)]l (2.10) 

The main contribution to (2.10) is when t~ and t~ are less than T, where T is 
a microscopic correlation time, i.e., the time during which the velocity of a 
particle remains correlated on a microscopic scale. The meaning of T will 
become clearer later. If we choose A f  such that 

1 
T ~ t  (2.11) 

and provided the filter functions g(t) are slowly varying over a time scale T, 
then (2.10) reduces to 

S " " 2Ne4 14 f ~  f ~  dt~ dt 3 gE(tl)gZ(t t3)(D(tl)D(t3))I (2,12) A ~o ) = ~ ; - -  ~ _ _ 

Here 

;o;o (D( t , )  D(t3))  = dt[ d t~(v( tO v ( q  + t~) v(t3) v(t3 + t ; ) )  (2.13)  

By (2.11), we see that (D( t l )D( t3 ) )  is slowly varying compared to 
g2(tl) g2(t - ta). Thus from (2.2) and Parseval's theorem, 

8Ne4 2 
Se(m)  = ~ (2Af) J-{(D(0) D(t))} (2.14) 
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The fact that (2.13) agrees with (1.4) can be seen if one differentiates (I.4) 
with respect to r, r ' ,  expresses 

f; a ( r ) -  a ( 0 ) =  dtv(t) (2.15) 

and uses the fact that since v is of order T, one can extend the integral to oo 
with negligible additional contribution. Using (1.4) in (2.14), we finally 
obtain 

8Ne4 (Af)2 ~- ( ( [a ( r )  - a(O)]2[a(t + r ' )  - a(t)]2)) (2.16) 
Sp(fo) - -  i4 r r  ~ 

It is this quantity which we wish to calculate for the random walk model in 
the next section. Even though jumps in a random walk are "instantaneous" 
so that the velocity v(t) is not well defined, the correlation function (2.4) is 
well defined in terms of (2.16) and the particle displacements. 

3. RANDOM-WALK MODEL 

Tunaley (6) calculated the current noise for a hopping conduction model 
based on the Montroll-Weiss (9) continuous time random walk (CTRW). The 
CTRW is a generalization of the ordinary random walk in which particles 
no longer wait a fixed time interval before hopping to a new site, but wait a 
random time t given by a "waiting time distribution" q/(t). The average 
waiting time [ is given by 

[ = Jo  t~t(t) dt (3.1 ) 

For the special case ~,(t)= 6 ( t -  t-) the CTRW reduces to the ordinary 
random walk. 

Tunaley (6) found that in the CTRW, (1.2) was automatically satisfied 
and that the excess noise Sl(CO) was given by 

Sl(CO) = 2fN-l(1 + 2 Re{ [g7-1(ico)- 1]-1}) (3.2) 

where qT(ico) is the Laplace transform of the waiting time distribution 

qT(ico) = f ?  e -'~ qJ(t) dt (3.3) 

The first term inside the brackets in (3.2) is an excess white noise term 
which has already been discussed by Tunaley (6) and Nelkin and Harrison. (7) 
This term contributes to the white background noise and we are interested in 
the excess noise above the background. Thus, if the Voss-Clarke idea applies 
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to this model,  then we should recover the same functional  of  the wait ing t ime 
dis t r ibut ion which appears  in the second term of  (3.2). 

In principle,  the equil ibr ium C T R W  is a well-defined stochastic process,  
and we should be able to calculate  higher-order  correlat ion functions such as 
(1.4). Our  task is made  much easier,  however,  by the knowledge that  the 

C T R W  is a contract ion of  an expanded descr ipt ion which is Markovian .  
Kehr  and Haus (s) introduced a mult is tate  t rapping model  (MSTM)  described 
as follows (see Fig. 1). A t  each site of  a lattice, there are M different states. 
The first state, i = 1, is the conduct ion state. Only in this state can part icles 
hop between different sites. Hopping between sites occurs  at a rate 7. The 
next M -  1 states (i = 2 ..... M )  are t rap states. A part icle  is captured from 
the conduct ion state into the i th  t rap state at the same site with t rapping rate 

7, and released from the i th  t rap into the conduct ion band with release rate 
r i. There is no hopping between different t rap states. Trapping and releasing 
occur only between a t rap state and the conduct ion state at the same site. 
The t rapping and release rates are the same at all sites. 

The model  is described by the Markov ian  master  equation,  

dP1(a, t) M 
dt - -  ~2 Z [ p ( a  - -  (~t) - -  ~ a , a ' ]  P l ( a f ,  t )  - -  ~ ~]iPI(O~, t )  

oL' i=2 

M 

+ Z riPi(a,  t) (3.4) 
i=2 

dPi(a,  t) 

dt  
- -  - - r i P i ( a ,  t) + 7iPl(a ,  t), i = 2 ..... M 

i = I (CONDUCTION) 

i = 2  S 

i = 3  T T 
R !A 
A T 

i = M _  t P E 
S S 

i = M  

7" )" , f " x  ,IF--,, 

I E l l  

SITES 
Fig. 1. The multistate trapping model (MSTM). Each site a contains M states. The first 
state, i = 1, is the conduction state. In this state, particles hop between sites at a rate 7. The 
states i = 2,..., M are trap states. A particle is trapped and released between the ith trap state 
and the conduction state at the same site with rates 7i, r~. There is no hopping between traps. 
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where Pi(a, t) is the probabil i ty of  being at site a at time t in state i for some 
given initial condition. 7i and r i are the capture and release rates for the ith 
trap state, p(a - a')  is the probabil i ty that if a particle at site a makes a hop, 
it hops into site a ' .  

One can introduce the probabil i ty that a particle is at a given site at 
time t without specifying the exact state it is in. This is just 

M 

P(a, t) = X Pi(a, t) (3.5) 
i = l  

This description is referred to as the contracted description. Kehr  and 
Haus  (8) showed that the C T R W  was equivalent to the contracted description 
of the MSTM through the relations 

qT(i~o) = 7[ioJF(io)) + 7 1 - '  

M 

F(z) = 1 + V' ?; (3.6) 
i = 2  z W ri 

For this equivalence to hold, (8) it is essential that the MSTM be calculated 
for "equilibrium initial conditions" 

with Pi given by 

Pi(a, t = O) = piP(a, t = O) (for all a)  (3.7) 

p, = IF(O)]- '  

Yi IF(0)] -1 i = 2,..., M (3.8) Pi  = F~-. 

Pi gives the relative probabil i ty of  finding a particle in state i at long times ~8~ 
and hence the name "equilibrium initial conditions." 

As shown in Section 2, calculating the fluctuations in the band-limited 
Johnson noise power involves correlation functions of the form (1.4). To 
calculate them requires a knowledge of the joint distribution function 

P(a4 t4, a 3 t3, azt2, a ,  t ,)  = {probability of  being at site 

a 4 at t 4 and a 3 at t 3 and... } (3.9) 

Since the expanded description of the MSTM is Markovian,  this can easily 
be expressed as 

P(a4t4, a3t3, aEt2, al tl) 

= ~ P(ai4t, laJ3t3) P(aJ3t3 l a~tz)P(akzt2 [a ' ,q)P,(a,  tl)  (3.10) 
(ikl 
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where P(ai4t4ictJt3) is the conditional probabil i ty of  a particle being at site 
a4 in state i at t 4 given that it was at site a 3 in state j at t 3. P~(a l t l )  is the 
same as in (3.4). For  stationary, lattice translationally invariant systems, 
P(a~t 2 last1) depends only on differences a = a 2 -  a 1 and t = t 2 -  t 1. We 
denote this 

PU(a, t) = P(a~t 2 ! a~ t,) (3.11) 

The transition probabilities can be related to solutions of  Eq. (3.4). 
Four ie r -Laplace  transforming (3.4) we obtain 

[zi + D(k)] P(k, z) = P(k, 0) (3.12) 

where P(k, z) is an M-dimensional  vector whose entries are the various states 

\ P.(k, z)/  

Here the tilde denotes Laplace transform, with z the Laplace t ransform 
variable. P(k, 0) is the N-dimensional  vector of  initial conditions. I is the 
M X M unit matrix and D(k) is the dynamical  matrix given by 

M 

[D(k)],, =7'[1 -;~(k)] + Z 7, 
i=2 

[D(k)]li = - r  i, i =  2 ..... M 

[D(k)]i, = --Yi, i = 2 ..... M 

[D(k)Jij=ri~ij ,  i , j = 2  ..... M 

).(k) is the Fourier t ransform o f p ( a -  a ' ) .  
The formal solution to (3.12) is 

with 

~(k, z) = C(k, z) ~'(k, 0) 

G(k, z) = [zl + D(k) ] - '  

(3.13) 

(3.14) 

(3.15) 

Note that (3.14) shows the explicit dependence of P ( k , z )  on the initial 
conditions P(k, 0). It is easy to see from (3.14) that the Four ie r -Laplace  
t ransform of the transition probabilities are given by 

-- s ( p U ( a ,  t)) = [G(k, z)] u (3.16) 
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where .~  stands for Laplace transform. To find the transition probabilities 
we must thus solve (3.15). This is outlined in the appendix, where we find 

G(k, z) = {zF(z) - y[,~(k) - 1 ] }  - 1  A(k, z) 

with 

[A(k, z ) ] , ,  = 1 

[a(k, z ) ] , , -  r, 
z + r  i ' 

[ A ( k ,  z)] n = Y_2(, 
r i  

(3.17) 

i = 2 ..... M (3.18) 

i = 2,..., M 

Z = ) j j  dal da 2 da3 da4 P(a4t4, a3t3, aztz,  cqtD 

• exp[i(qla 1 + q2a2 + q3a3 + q4a4)] (3.20) 

Without loss of generality,, we take a 1 = 0 at t 1 = 0 so that 

Pl(al t l ) = Pl ~(al -- 0) (3.21 ) 

Then using (3.10), (3.16), and making a change of variables, we find that 
(3.19) can be written in a compact  matrix notation 

( [ ~ ( t  + ~')  - ~ ( t ) ] 2 [ ~ ( ~ )  - a ( 0 ) ]  2) 

{3 2 {3 2 
= C3q2 f(q'r)Iq=~176176 (3.22) 

with the matrix f(q, r) defined by 

f(q, r) = f - l ( G ( q ,  z)) (3.23) 

with 

2 8 {9 2 
Z(q , ,  q2, q3, q4)fql=q2=q,=q4=o (3.19) 

[A (k, Z)]u = [(z + rD(z + rj)] - '{y, rj + 6u[zF(z ) - y(2(k) - 1)(z + r,)]} 

i , j = 2  ..... M 

Rather than inverse Fourier transforming (3.17) and (3.18) we find the 
correlation function (1.4) directly from the characteristic function: 

([a(&) - a(t3)] 2 [a(&) - a ( t0 ]  2) 
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and p the vector of initial probabilities 

3/ 

(3.24) 

A direct calculation shows 

9 2 

c~q2 f(q' t)lq=o = f - '  ( --Tcr~ [zF(z)]2 B(z)) (3.25) 

with 

[B(=)],, = 1 

[B(z)] , i  ri 
z + r i  

i = 2,..., M (3.26) 

[B(z)] i ,  = -  7i 
z + r  i 

~ir2 
[B(z)}ii = (z + ri)(z + r j ) '  

i =  2 ..... M 

i , j = 2 , . . . , M  

In obtaining (3.26), we have made use of 

~ ( o )  = 1 

~ 2(q)iq=o = i/z = 0 

(31 
~.: ~(q)t .=o  = - o ~  

(for no field) 

(for no field) 

(3.27) 

where ~ and a 2 are the mean and mean square displacement for a single 
jump, i.e., 

(3.28) 

For r, r '  small compared to the capture and release times, i.e., 

1 1 
r , r ' < - - , - - ,  or z>>ri, Ti (3.29) 

ri 7i 
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only the I-1 entry of (3.25) contributes to lowest order in rir ,  7iv, i.e., 

(3.30) 

r)tq=o] u O((r ir)  2, (7ir)2), (i,j) ~ (1, 1) 

The assumptions made in (3.30) are physically quite reasonable and will be 
discussed later. With the simplification (3.30), the matrix multiplication in 
(3.22) is easily performed: 

7'zcr4rr' f - ' ( [ z F ( z ) ]  - t )  (3.31) 
( [a( t  + v ' ) -  a(t)]Z[a(v)- a(O)12) - 1 -i- Z(y,lri) 

From the equivalence between the C T R W  and MSTM (3.6), it follows that 

t- '(_re(z) t ( [ a ( t  + r ' ) - a ( t ) ] 2 [ a ( r ) - a ( O ) ] 2 y  - (3.32) 
t \ 1 --  I~(z) ]  

Thus from (2.16) we find that the power spectrum of band-limited Johnson 
noise fluctuations is given by 3 

16Se4a~(Af) z [ vT(im) ] 
Se(co) = 14 { Re 1 -- qT(im)J (3.33) 

From (2.5) we see that the average power is 

4kTAf 2Ne202o 
(Ps) - - - ~ - -  1 2 ~  Af (3.34) 

The right-hand side of (3.34) has been shown to be true by Tunaley. (6~ 
Combining (3.33) and (3.34) we finally obtain our result: 

S , ( c o ) _  4i  Re [ ~7(ico) ] = S,(co) (3.35) 
(pa)2 N 1 -- qT(ico)J 

The Voss-Clarke idea thus holds for the CTRW. Note that the result (3.35) 
holds even if Sl(CO) does not have a 1If frequency dependence as in the 
original Voss-Clarke experiment. The spectrum, $1(09), obtained for various 
choices of the trapping parameters ?i ,  ri or the waiting time distribution 
~7(ico), has been considered by Nelkin and Harrison ~v) and Tunaley. (6) The 
result (3.35) holds independently of the choice of parameters, provided i is 
finite. 

3 We make use of the fact that if H(t) is an even function of t then ~Y-(H(t))= 
2 Re-~(H(t))lz_i~ , .  Note that the function in (3.32) is even in t since it is proportional to 
(I(O) I(t)), which is even in t. 
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4. N U M B E R  F L U C T U A T I O N S  

An interesting question to ask is "What is the power spectrum of fluc- 
tuations of the number of carriers in the conduction ( i =  1) state?" The 
power spectrum for number fluctuations is defined as 

SN((L) ) = 2 f dt ei~ Ni(t))  (4.1) 

where N~(0) is the number of carriers in the conduction state at time 0 and 
N~(t) at time t. In the independent particle approximation, 

(N~(0) N~(t)) = N • {probability of a particle being in the hopping 

state at times t and 0} (4.2) 

This probability is given by 

Z P(alt, a'lO)==-~Pll(a,t)pl=--'~-l([G(k,Z)]l~lk oPl) (4.3) 

From (3.17) and (3.18) we see 

(NI(0) N,(t)) = Np~ [zr(z)] -1 (4.4) 

The average number of carriers in the conduction band is 

Thus from (3.6) 

SNI((J)) 2F(0) 
( ~ ) z  -- N[zF(z)] 

that is 

Krl = Np l (4.5) 

4[ Re{~7(ico)/[1 -- qT(co)] } 

N 
(4.6) 

This gives us a simple interpretation of the fluctuations in the CTRW in 
terms of the MSTM. The fluctuations are due to fluctuations in the number 
of carriers in the conduction band. The presence of a field affects only the 
hopping between the various sites and not the transitions between the states 
at a given site. Hence, the fluctuations are trully "equilibrium resistance fluc- 
tuations" and it is not surprising that the Voss-Clarke result holds. The 
requirement that r, r '  be small compared to the trapping and release times 

sN,( o) sago) 
- sl( o) (4 .7 )  
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now seems physically reasonable. If  the trapping and release times are not 
large compared to r, r ' ,  then the fluctuations in the number of  carriers will be 
washed out since they occur on .a time scale smaller than what we are 
observing. A microscopic correlation time T is seen to be the correlation 
time of  a particle in the conduction band. 

Again, note that Eq. (3.33) is not dependent on any particular form for 
the spectrum, which indicates that it should be possible for the Voss-Clarke 
result to hold for sources that do not have a 1If spectrum. 

5. D I S C U S S I O N  

It is physically plausible that the Voss-Clarke result holds for this 
model. One way of  seeing this in terms of  the MSTM is as follows: Consider 
the four-time velocity correlation function as in (2.13) 

(v(0) v(T) v(t) v(t + r ' ) )  (5.1) 

where r, r '  are of  the order of  a microscopic correlation time T, and t is the 
order' of  the trapping and release rates, 

t >> T~> r, r '  (5.2) 

Since t is much greater than T, we expect that v(0)v(v)  and v(t)v(t + r) 
would be independent of each other and thus (5.1) would factor as 

(v(o) v(t) v(t + = v(t + (5.3) 

This indeed would be the case if the particle were always in the conduction 
band and there were no traps. However, because there are traps, there is 
additional correlation since there is a probability that a particle in the 
conduction band at time 0 may not be in the conduction band at t. That is, 
the fact that a particle can be trapped reduces the correlation function (5.3) 
by a factor 4 

(NI(0) Nl(t)) 
( 71)2 (5.4) 

the probability of  being in the conduction state at time 0 and time t. Thus, 
(5.3) is 

(v(O) v(r) v(t) v(t + r')) = (v(O) v(r))(v(t) v(t + z')) (NI(0) Nl( t ) )  (5.5) 

4 Actually, (5.3) should be reduced by a factor proportional to (Nl(0) Nj(z) Nl(t ) Nl(t + r')), 
i.e., the probability of being in the conduction state at times 0, r, t, t + r'. However, since r, 
r' r t, we assume that a particle band at 0 will be there a time r later with probability one, 
and similarly for t and t + r'. 



Random-Walk Model 15 

When we normalize (5.5) by the square of the band-limited Johnson noise 
power, we essentially divide out by (v(0)v(r))2; thus the correlation function 
(5.1), when suitably normalized, is actually a measure of the number fluc- 
tuations. 

Now, let us consider the correlation function 

(v(0) v(t)) (5.6) 

Again t is large compared with the microscopic correlation time T. We thus 
expect (5.6) to factor into 

<v(o) v(t)> = (5.7) 

Again, this would be true if there were no traps but the presence of traps 
reduces (5.6) by (NI(0) N1(t)>/N ~. Hence, (5.6) becomes 

(v(0) v(t)> = (v(O))(v(t))<N,(O) N,(t)}/g~ (5.8) 

Now with no applied field, ( v (0 ) )=  0 and (5.8) vanishes. With an applied 
field, (v(0))4= 0, and when we normalize out by the current squared (essen- 
tially divide out by (v(0)) 2) we see that (5.5) gives us a measure of the 
number fluctuations. The field does not cause the fluctuations but is only 
needed so that (v(0)) is not zero. However, since (v(0)v(r))  is not zero in 
(5.4), the four-point correlation function (5.1) does not need an applied field 
to be nonzero. Thus, in our model, the two-point correlation function with a 
field on and the four-point correlation function without a field measure the 
same thing, namely, the fluctuations in the number of carriers in the 
conduction band. 

In view of this discussion, it is not surprising that the CTRW, which is 
equivalent to a trapping model, exhibits the Voss-Clarke result. 
Furthermore, the argument presented here seems fairly general and would 
appear to apply to any trapping model where the capture and release times 
are long compared to the microscopic correlation time of a particle in the 
conduction state. The result is not dependent on the specific nature of the 
spectrum and should hold for a non- ( l / f )  spectrum. It should also hold for 
the physically relevant generalization where trapping parameters vary 
randomly from site to site. 
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A P P E N D I X :  C A L C U L A T I N G  G(k, z) = [zl + D(k)] - ~  

In this appendix,  we invert the matr ix  zl + D(k) to solve Eq. (3.15). The 
method we use is the s tandard  algori thm of  augmenting the matr ix  with the 
identity matr ix  and performing elementary row operat ions until the original  
matr ix  is conerted into the identi ty matrix.  The augmented identi ty matr ix 
will then be converted into the inverse matr ix:  

[ A l l  ] , [I L a - '  ] 
elementary 

row 
opera t ions  

We start with zl + D(k) given by (3,12) and (3.13) 
following sets of  e lementary row operat ions in order:  

1. Mult iply the i th row by 1/z + r i for i = 2,..., M. 

2. Add  r i t imes the i th  row to row 1 for i = 2,..., M. 

3. Divide row 1 by z f ( z ) -  7[ )~ (k ) -  1]. 

4. Add  yi/z + r~ t imes row 1 to row i (i = 2 ..... M).  

This gives us the matr ix  G(k, z) given by (3.17) and (3.18). 

and perform the 
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